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Abstract. A new method to tindgroundhtatesisproposed forrandomspinaystems. 
It is applicable to systems with any boundary conditions, any bond distribution and 
any magnetic field. The efficiency of this method is confirmed numerically in the case 
of the tw-dimensional Ising spin glass with Gaussian bond distribution in a uniform 
field. The introduction of more than two replicas improves the efficiency of the 
method considerably. It is also found that the renormalilation process is effective. 
The increase in computational time with respect to system size is moderate and 
well fitted by a power law up to L = 32. Magnetizations are  calculated for various 
magnetic fields using the new method. The size dependence of the susceptibility is 
found to be x(L) m L= with z = 0.476(5). This is somewhat larger than predictions 
using domain-wall renormalisation group argnments. 

1. In t roduct ion  

For the last 20 years, random spin systems have attract,ed the interest of many physi- 
cists. This is because they are the simplest examples of random systems and models 
such as the Edwards-Anderson (EA) model and the SK model can be regarded as 
minimal models of random systems. Furthermore, the mean-field (SK) model has 
many interest.ing f&ures. Severa! exotic co~cep?. s ~ c h  a rep!ica-sy.:m&ry bp&- 
ing, metastability of the low-temperature phase, multi-valley structure and the ultra- 
metric structure of the phase space are proposed in the course of the investigation of 
this model. 

There is, however, some evidence [I ,  21 and there have been discussions [3-61 which 
suggest that the nature of random spin systems in finite dimensions may he quite 
different from that of the SK model. The essential difference lies in the properties 
of the low-temperature phase. For example, Monte Carlo simulations for the & J  
model in three dimensions [l] suggest that ,  even in the low-temperature region, the 
Edwards-Anderson order parameter qEA tends to zero in the limit t -+ 00 and recent 
results of Monte Carlo simulations for the same model in the low-temperature region 
[7] show that the surface susceptibility converges to zero in the thermodynamic limit, 
indicating that PEA = 0. These facts can not be explained by the mean-field theory. 
The scaling theory [4, 51, based on the assumption that there are only two phases 
below the critical point, seems to be successful in explaining several aspects of finite- 
dimensional systems, and it predicts the absence of the phase transition in the presence 
of a magnetic field. In this theory we assume a situation similar to that described by 
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the random ordered phase (ROP) picture which was originally proposed by Ueno and 
Oguchi [8]. The ROP is an ordered phase in which percolated non-frustrated clusters 
in the system exhibit a phase transition similar to that of the Mattis model. This 
picture is, however, incompatible with the above results which suggest that qEA = 0. 

In addition, a Monte Carlo simulation was recently performed for the $J model 
in three dimensions in the presence of a uniform magnetic field 191. According to 
it, the phase boundary seems to exist which corresponds to the AT line for the SK 
model, though the variance of the distribution function P ( q )  converges to zero in 
the thermodynamic limit even in the ordered region. Another recent Monte Carlo 
simulation [lo] shows that the contour of the constant spin-glass susceptibility does 
not seem to approach the line H = 0 and the existence of the AT line is insisted on. 
Hence the controversy concerning the nature of the ordered phase is far from being 
settled. 

To investigate such subtle problems regarding these models, numerical methods 
are promising. The transfer-matrix method is one of the most powerful methods 
for calculating the exact ground states. The computational time, however, increases 
proportionally to L"2(d-1)L (a > 0, L is the linear size of the system) and the memory 
storage required also grows exponentially. Nevertheless, there are some methods [Il- 
131 by which one can obtain the free energy with a computational time proportional 
to O ( N 2 ) ,  where N is the number of spins. 

As for the investigation of the ground states, one can obtain the ground state 
within a time of the order of O ( N 3 )  [12, 14-17]. Unfortunately, these methods are 
available only to the two-dimensional system without magnetic field. Furthermore, 
it is proved that the problem of the ground-state search is NP-hard in the case of a 
non-vanishing magnetic field and for three or more dimensions. Generally speaking, 
the only method which enables us to study large systems is one which invokes random 
numbers, such as Monte Carlo simulation. This method, however, encounters the 
difficulty of the extremely long correlation time below T,. 

In the present paper we propose a new method for investigating the ground-state 
properties of such random systems. Strictly speaking, our procedure does not guaran- 
tee the exact ground state. I t  is shown, however, that we can find it with a remarkably 
high probability and in a reasonable computational time. 

The present work is inspired by the replica Monte Carlo method [I81 proposed by 
Swendsen and Wang and the new method presented in this paper can he regarded as 
its extension to the ground-state search. There are, however, bwo ingredients in the 
present method which Swendsen and Wang's algorithm does not share. 

First, in the present method, more than two replicas are compared in the determi- 
nation of clusters which are taken to be the units of updating, while only two replicas 
are compared in Swendsen and Wang's algorithm. The number of replicas is a key 
factor contributing to the efficiency of the algorithm, as discussed later. For example, 
if this number is too small, percolation of clusters takes place. In such a case we can- 
not find relevant clusters with small excitation energy but only find a union of many 
such clusters by comparing replicas. In the worst case, such an 'accidental' big cluster 
may contain almost all the spins in the system and, as a result, the method becomes 
ineffective. Swendsen e l  a l  reported !19] that this is also the main reason why their 
procedure does not work so well for systems in three dimensions as in two dimensions. 

Second, we have taken into account the fact that the low-lying excitations have 
themselves a hierarchical structure or a scaling property, as discussed by Fisher and 
Huse [4, 51. In our method, a clustering procedure is performed hierarchically in a 
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fashion similar to the renormalization transformation. By doing this, the efficiency of 
the method is greatly improved. 

In section 2 we describe the method and in section 3 we show how effective it is 
for the two-dimensional EA model with a Gaussian bond distribution. In section 4 
the magnetization is measured i n  the presence of a magnetic field and we find that 
the size dependence of the susceptibility can be given as x ( L )  o( This relation 
leads to the scalingform m(L)L = fsca,ing(HL'.4'6), which implies m a H0,67a. From 
this result and Fisher and Huse's droplet theory we have f? 0.476, where 0 is the 
exponent which characterizes the size dependence of the droplet-excitation energy. In 
section 5 ,  some discussions and a summary are given. 

2. The replica method 

In general, i t  is difficult (NP-hard) [20,21] to find the exact ground state of a random 
spin system with a given bond configuration. If we try to find the ground state using 
one of the standard methods such as simulated annealing (SA) or the transfer-matrix 
(TM) method, it takes at least a computational time proportional to exp(aN*)), where 
a and b are positive constants and N is the total number of spins. 

In this section, we formulate an alternative method which is far more effective 
than the standard methods in several cases. If we try to find ground states of systems 
in finite dimensions by SA, difficulties arise from large-scale elementary excitations. 
Fisher and Huse [4, 51 discussed the scaling properties of such excitations extensively 
and they call such excitations droplets. Thus the problem which we have to solve 
here is how to find such excited clusters. If we find all the excited droplets for a spin 
configuration, we can get the exact ground state by flipping them. 

Our starting point for this problem is the fact that many local frozen clusters of 
spins can he observed when a random spin system at  sufficiently low temperature is 
simulated using a standard Monte Carlo technique, say the Metropolis algorithm with 
single-spin updating. It is quite natural that  a close relationship exists between these 
clusters and the droplets. We can determine frozen clusters either by comparing two 
spin configurations which are separated by a long time interval, or by comparing two 
spin configurations independent of each other, which are constructed by starting from 
different initial states. Thus one can easily think of a naive method of optimization 
as follows. 

(1) Generate two spin configurations ('replicas') using the standard Monte Carlo 
method at a n  appropriate temperature or using simulated annealing with a particular 
cooling schedule. (Let us  denote them as S( ' ) (R)  and S( ' ) (R) ,  respectively. Here 
S @ l ( E j  takes the vaiues +i or -i for each site E.) 

( 2 )  Assign the number 

(1 - Sc')(R) x S(')(R))/Z (2.1) 

to each site R. (We call this integer a colour number of the site R.)  Then divide the 
whole system into clusters. Here, a cluster is a group of sites with the same colour 
which are connected to each other by bonds. 

If flipping of all the spins in a cluster lowers the energy we flip them, then 
we repeat this procedure for all the clusters. 

(3) 
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It  is possible that this naive optimization lowers the energy considerably. I t  cannot 
be expected, however, that such a single operation is enough to find the exact ground 
state. In order to obtain a more efficient method we must take into account the 
following two facts which we have ignored in the above naive optimization. First, 
because of the percolation of the clusters, the probability can be very small that  
an excited droplet is flipped. When all the cluster has percolated and as a result 
there is only one large cluster, the above procedure is clearly useless, because the 
resulting configuration is one of the two initial configurations S(') and S(2) .  There 
is no improvement compared to the initial configurations in this case. This difficulty 
is more serious in higher dimensions, since the percolation threshold is lower in such 
situations. 

Second, each spin belongs in general to many droplet excitations with different 
scales at  the same time. Therefore, we cannot expect that  all the clusters with different 
scales are optimized by only a single step of the replica optimization. 

The first difficulty can be resolved by introducing many replicas, as we will see be- 
low. The second difficulty of the naive method can be cleared by introducing iterative 
operations of the replica optimization. There are several ways to achieve this. One 
can arrange single operations hierarchically while a one-dimensional arrangement is 
also possible. In the actual numerical calculations presented in sections 3 and 4, we 
have used the one-dimensional arrangement in the main. 

In order to prevent the clusters from percolating, it is effective if we increase the 
number of colours which we introduced in the naive optimization for division of the 
system. The probability for two random clusters to have the same colour accidentally 
is diminished by doing so. The most desirable situation is that each cluster has a 
different colour from all the others. Taking these facts into account, we consider 
here the following elementary operation over n spin configurations. Let us call them 
replicas and denote them as S@)(R)  ( p  = 1,2,. . . , n), as before. 

fir -... I-+ ..- A --"_ :L.. 6h..Al..-.,m+ "...----- +;-- :- ... h:-h -_._. r -..-I:--- --" :nnl..,l.4 
I."., , 1 L Y  U" "C.,CII"b " A L L  C ' C . L . C " " Y L J  Y p C L a Y I Y I .  ..I 1.111111 L.LY.AJ L c y L ' L Y  Y I C  I I I U L Y Y I Y .  

(1) Initialization. Define vertices as follows: 

vi E {Ri) i =  1,2 , . . . ,  N .  

a v.&flable $1 a ii" to each Assign 
an inter-vertex coupling constant J,,, to each pair of two vertices. The initial values 
for these new variables are as follows: 

U?' e S( ' ) (R,)  x S ( p ) ( R , )  

(2) Assign a 'colour number' t,o each vertex. The 'colour number' is an integer 
defined by the following equation: 

" 
(2.3) l l i  1 7 )  ~ P " , r - S , ,  -(!'), 

(1 -n "  I .  4 v -  = f(a;-,, U;-,, , . . ,U"  ) E t LV 
p=2 

This is a straight-forward extension of the previous definition (2.1) for n = 2. 
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(3) 
(4) Assign a cluster variable 5(II) to each cluster in each replica as follows: 

Divide the system into clusters. 

Assign a cluster magnetization jic to each cluster as follows: 

( 5 )  Calculate the inter-cluster couplings ticc,} which are defined as 

jcc, J~~~~~ (1) (1) . 
" C C  

"'CC' 

(6) Rename 'clusters' as 'vertices', i.e 

&4 e 5 p  

Pc c c  

Jcc8 e .fee, 

(7) Change the sign of each new vertex variable on a replica if the energy is 
lowered by doing so. Repeat this procedure for all the vertices until there is no vertex 
to be changed. (Let us call these operations 'vertex-quench'.) Apply the vertex-quench 
to all the replicas. 

(8) If all the replicas coincide, that is, if 

(2.7) ,(P) = ( P ' )  " U" 

holds for any p ,  p' and U ,  the elementary operation is terminated. 
(9) 
(10) 

If any change occurs during the last pass of step 7, go to step 13 
Calculate the total inter-vertex energy 

for each replica. 
Let po be the index of the replica which gives the minimum energy. Replace 

all the vertex variables except for those of the poth replica by random numbers which 
take the values +1 and - 1  with equal probability. 

(11) 

(12)  
(13) 

Apply the vertex-quench to all the replicas except for the poth replica. 
Change the sign of the original spin S(l)(Ri) if 

R, E U and U:')  = -1.  (2.9) 

(14) Go to step 2 
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I t  can easily be seen that in the case of two replicas (n = 2) the two configurations 
coincide after the first pass through to step 7 and consequently that steps 8 to 14 are 
useless. 

Repeated application of steps 2 to 7 is particularly effective in the case of the one- 
dimensional arrangement presented below. In this case, there is one special replica 
which has been optimized much better than the others. In other words, the optimized 
scale of the other (n - 1) replicas is smaller than the first one. The typical size of 
the clusters which appear at step 3 is determined by this optimized scale of (TI  - 1) 
replicas. Therefore, the probability is very small in general that an excited droplet is 
recognized as a single cluster if i t  is much larger than the typical size of these clusters. 
As a result, the energy of the first replica is hardly lowered by only one pass of steps 
1 to 7 since most of excited droplets in this replica are much larger than the typical 
size. This difficulty can be partially overcome by optimizing the (n - 1) replicas as 
well as the first replica and by applying steps 2 to 7 repeatedly until all the replicas 
coincide. 

Steps 10 to 12 may make the whole procedure more efficient, although they are 
not as crucial as the other part. In fact, the elementary operation works well without 
these steps, if a proper condition of termination is provided. 

In order to explain the complete algorithm we have to describe how the above ele- 
mentary operation is applied repeatedly. Although even a single elementary operation 
is effective in lowering the energy, for large systems one can hardly reach the exact 
ground state by only one operation. The simplest solution to this problem is to form 
a sequence of elementary operations. That is, the final spin configuration of the i th 
operation is used as one of n initial spin configurations for the (i + 1)th operation and 
the other (n - 1) initial configurations are obtained by quenching spin configurations 
at  T = CO (completely random configurations). In the following sections we use this 
type of arrangement. 

There is an alternative choice in which there is no special initial spin configuration 
for each operation. That is, all the initial configurations for an operation ate the 
final configurations of the other n operations which are independent of each other. 
This type of arrangement produces a tree-like structure. In this case, the number 
of total operations grows very rapidly as the number of generations is increased. In 
spite of this disadvantage, this type of arrangement may be necessary for treating very 
large excitations. We expect that this tree-like (hierarchical) structure is suitable for 
treating large droplet excitations, because the droplets have in general a hierarchical 
structure. Several droplets compose a large cluster, several large clusters compose a 
larger cluster, and so o n  In order to separate a droplet of a particular scale from 
other parts of the system, all the initial spin configurations must be well optimized 
up to the scale of such a droplet. Otherwise it will be divided into pieces a t  step 3 
in the elementary operation described above and therefore this operation will fail to 
recognize the droplet as a single cluster. 

As we have already stated above, however, this dificulty is partially (or maybe 
completely) overcome by introducing the renormalization procedure realized by step 6 
and by repeated applications of steps 2 to 7 .  We found that the hierarchical arrange- 
ment is not necessary at least for L < 32 where the one-dimensional arrangement is 
good enough, as we will see below. 



Replica optimization method for spin glasses 1061 

3. Computational time and efficiency 

In this section, we demonstrate the efficiency of the method described in the previous 
section in the case of the EA model on the two-dimensional square lattice with a 
Gaussian bond distribution. The distribution of the coupling J is given by 

where we have adopted periodic boundary conditions. Calculations were performed 
for several bond samples. For each bond sample, we calculated eight sequences with 
different initial spin Configurations in parallel. Calculations for all these sequences 
were stopped when the eight spin configurations coincided with each other. In order 
to avoid unnecessary optimization, if there is more than one sequence for which the 
energy is the iowest, caicuiations ior such sequences arc stopped untii a iower energy 
is found in the other sequences. 

In figure 1, we show the minimum energy Em,”(t)  as a function of the number of 
trials ( t )  for L = 64 and H = 0 for a single bond sample. The average was taken over 
sixteen independent runs for simulated annealing (SA) and the Monte Carlo quench 
method (MQM) and four runs for the present method (the n-replica optimization 
method (WROM)). The Monte Carlo quench method was adopted by McMillan [22] 
for calculating the ground states of the present model and it proved to be effective 
for small systems ( L  5 8). One sweep of the Monte Carlo updating over all spins is 
considered as one trial for SA and for the MQM. The scheduling of cooling for SA was 
determined empirically. We set the temperature as follows: 

T( t )  = Q exp (-4t/t,,,) + b (3.2) 

where a,  b and t,,, were determined so that  T(0) = 2.0 and T(t,,,) = 0.5. The 
temperature used for the MQM was determined empirically as well. In fact, w e  studied 
a t  T = 0.6. We also tried other temperatures: 0.3 ,  0.4, 0.5, 0.7 and 0.8, and found 
that the value T = 0.6 is optimum for this system size and for t,,, = 1024. For this 
system size ( L  = 64) the exact ground state w a s  not reached by any method within 
t,,,. Nevertheless, we can see from the figure that the n-ROM is faster than SA and 
the MQM. For example, the minimum energy reached by SA a t  t = 1024 was reached 
by 4-ROM at  t = 3.  Of course, the CPU time per trial is longer for 4-ROM than for SA. 
This fact does not, however, change the superiority of the 4-ROM over SA, since the 
ratio of the CPU times per trial is no more than 30. We can also see from figure 1 that 
n-ROMs for n > 2 are more effective than 2-ROM, as we pointed out in the previous 
section. *We can see this more cleariy in figure 2 which shows the repiica-number 
dependence of the CPU time r required for finding ground states in the cases where 
L = 6 and 8. It is clear that %ROM converges much more slowly than 5- or &ROM. The 
latter gives the minimum r .  This is because 2-ROM fails to separate a droplet from 
a large percolated cluster. On the other hand, such percolation of the ‘same-colour’ 
droplets hardly occurs for 5- or &ROM, since the number of colours p4 or 25) is much 
larger than that for 2-ROM (2’).  It should be noted, however, that the efficiency is not 
improved, when we increase the number of the replicas above a certain number. We 
can explain this in  a similar way. That is, the increment has no advantage once the 
number of replicas reaches a certain number at  which almost all the relevant clusters 
are separated. In addition, the CPU time per elementary operation grows as the replica 
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Emi, (L=64,H=0)  

c 
'3 w 

NUMBER OF TRIALS 

Figure 1. The lowest eneqy plotted against the number of trials for N = 64 x 64. 
The symhols ' S A ' ,  ' M q M '  and ' ~ - R O M ' ( ~  = 2 , 3 , 4 )  stand for simulated annealing, the 
Monte Carlo quench method and the present method with n replicas, respectively. 
The scheduling of the simulated annealing is detamined empirically by several trials. 
The temperature for the Monte Carlo quend method is T = 0.6 which is found to 
be optimum for this sine. The unit of the horizontal axis is one sweep of Monte Carlo 
updating OMT all spins for S A  and MQM and one elementary operation for ~ - R O M S .  

0.4 c t 

t 
0.0 ' '  ' ' ' ' ' ' ' ' " ' ' I ' 1  

0 5 10 15 

Figure 2. The average time required to  find a ground state plotted against the 
number of replicas for L = 6 (+) and L = 8 ( X ) .  

the 

number increases. T h u s  the total eficiency is diminished for replica numbers that are 
too large. In table 1, the number of replicas we have used is listed, together with the 
average CPU time per ground state for 6 5 L 5 32. The listed replica numbers are 
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Table 1. The first column (L) shows the system sizes and the second column (n) 
shows the number of replicas adopted for each system size in the present calcula- 
tion. The number Nsa,,,,,te is the number of diKaent bond configurations used in 
calculating the average CPU time (7). 

n N,,,,I. T (s) 

6 6 128 0.064 
8 7 128 0.17 
10 8 32 0.68 
12 9 32 1.5 
16 10 32 7.3 
20 12 32 23 
24 14 8 44 
32 20 4 260 

103 

102 

t- 10-1 

10-2 
/ 

10-3 ti I I i 
10' 102 103 

N 
Figure 3. The average time required to find a ground state plotted against the 
system size. The different symbols correspond to different methods: the simulated 
annealing ( x ) ,  the transfer-matrix method (+) and the present method ( 0 ) .  The 
curves are guide linea for eyes. 

determined empirically and can he taken as approximate optimum numbers. It should 
be noted, however, that the CPU time for n f 1 is almost the same as that for n. 

Figure 3 shows the averaged computational time (7) plotted against the total 
number of spins ( N ) .  To be precise, 7 is the time required for one of the eight sequences 
to  reach the ground state averaged over the sequences and the bond configurations. It 
is easily seen that the present method is Faster than the ordinary simulated annealing 
method for any N and faster than the transfer-matrix method for large N .  In addition, 
it is remarkable that only 7 s  for the present method are well fitted by the power law, 
i.e. 

r m N A  h - 2.6. (3.3) 

Computational times for the other methods diverge more rapidly than the power law. 
However, i t  is necessary to perform the calculations for larger systems and folllow the 
analytical discussion to confirm the asymptotic power-law behaviour of the computa- 
tional time. 
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Of course, the computational time depends on what machine is used to perform 
the calculation. All the numerical calculations presented here were performed on the 
VAX6440 of the Meson Science Laboratory at  the University of Tokyo. Roughly speak- 
ing, however, the CPU time for other machines is proportional to that for the present 
machine, displayed in figure 3. Therefore, we believe that if the same calculation was 
performed on a different computer, a figure similar to figure 3 would result, and would 
be different from it only by the unit of the vertical axis as long as the relevant machine 
is a standard scalar computer. 

If we use other types of computer, such as vector machines which accelerate some 
particular types of programs, the relative placement of three sets of data points in 
figure 3 will be changed. In practice, the present method is not suitable for vector 
processors because of the clustering procedure (step 3 in the elementary operation) 
while the other two methods can be vectorized completely. In addition, the Monte 
Carlo updating is accelerated by a factor of 10 to 100 by  the multi-spin coding (for 
example, see [23, 24]), although it does not accelerate a single sequence of the Monte 
Carlo updating. Even if we take these facts into account, the present method is faster 
in finding the ground states than simulated annealing if L 2 12. For L 2 12 we could 
not find any exact ground state in reasonable computational time ( r  < 10 hours) by 
simulated annealing. The n-ROM is faster than the transfer-matrix method for the 
case L 2 16 because the vectorization favours the transfer-matrix method only by 
a factor of 10 to 100. Furthermore, it should be noted that,  for periodic boundary 
conditions, the transfer-matrix method requires much more time and memory than 
for open boundary conditions. In this case, the computational time and the memory 
storage needed in calculation are proportional to ZZL. Therefore, it is almost hopeless 
to calculate a ground state for large systems, say for L 2 16 in this case. 

The effect of a homogeneous magnetic field on the computational time in our 
method is a subtle problem. I t  is obvious that if the field is strong, the ground state 
is almost the same as the 'all-up' state where only small fraction of spins directed 
down against the field, and there is no high barrier between the ground state and the 
'all-up' state. In such cases, the convergence of the present method is expected to be 
very rapid, since a spin configuration generated by a mere quench is already close t o  

reach the true ground state. In spite of these facts an increase of the computational 
time was, however, observed when a weak magnetic field was applied. Of course, there 
is a certain peak above which i decreases, as i t  should. The field dependence of the 
computational time is shown in figure 4 for L = 6 and L = 8. 

We have checked that the states obtained by the present method are the true 
ornnnrl  state. by compari!lg those with ?be resx!?s of the ?ransfer-~.a!rix method f ~ r  
L = 8 and L = 16. We have calculated the ground states of 100 different systems with 
periodic boundary conditions in the case where L = 8. In the case where L = 16, we 
have examined 100 systems with open boundary conditions. In both cases we have 
performed our calculations for H = 0 and II = 0.1. Two sets of results obtained by 
different methods coincided with each other completely. For further confirmation, we 
compared two sets of resu1t.s obtained by the present method with different replica 
numbers for periodic boundary systems with linear size L = 16. In this case, we 
detected one failure among 100 samples. Therefore, we can expect that the ratio of 
failures is very small and that it is approximately 1% at  most. Thus these failures do  
not change our results in this paper beyond statistical error bars, a t  least for L 5 16. 
We believe that this is also the case with the data for L = 20 and 24 presented in 

&ha __-.._A ""-1 &Le-.. :- - - I  -_-- 1 -... I . . : _ *  ..ul:t.t:-.r .. .h.:*L -.Lao :i A:K-. . l+  tr. 
U ' l r  6 L " U " U  uuc..yc -1111 l i l l G L C  1- 11" Lb ,&C ,"""-1J"16 m L . I Y - Y L " I I  W l l l L , ,  lll-nr" I Y  "...LL"LI Y" 

e.-.--.- 1"-""" 
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H 
Figure 4. The average time requbed to find a ground state plotted against the 
magnetic field. The cremes ( x )  and the diamonds ( 0 )  indicate data for L = 8 and 
L = 12, respectively. 

the next section. In  addition, we can in general diminish the fraction of failures by 
increasing the number of the parallel sequences if necessary. 

4. Magnet iza t ion  at T = 0 

In this section, we apply the n-ROM to the EA model with a symmetric Gaussian bond 
distribution in the presence of a uniform field, and study the critical behaviour of the 
magnetization near N = 0 by means of the finite-size scaling method. Many authors 
have reported on this problem. For example, two-dimensional systems with continu- 
ous bond distributions are investigated in [25-27] (Gaussian bond distribution) and in 
[28] (rectangular bond distribution). The critical behaviour, however, is investigated 
mainly by calculations of the domain-wall energy. The stiffness exponent tl which 
characterizes the size dependence of the domain-wall energy is calculated directly in 
this method. The other critical exponents are derived using the domain-wall renormal- 
ization group (DWRG) argument [25, 291 with the estimated value for this exponent. 
In contrast, there are only a few direct estimations [27, 281 of other exponents such 
as y ,  6 and U and the precision of these direct estimations is not so good as that of 
the indirect one by DWRG arguments. Therefore, it is interesting t o  estimate directly 

the iii(jireei esiimaiion 
is. 

Using the transfer-matrix method at T = 0 the stiffness exponent 0 bas been esti- 
mated as B = -0.281(5) [25] or 0 = -0.291(2) [26] for the two-dimensional EA model 
with a Gaussian bond distribution. The DWRG argument and the scaling argument 
based on the droplet picture [4] yield the following scaling relations: 

erhie&; enpoi,ei,in oiiiei thai-, ikle exponen~ 8 io see ho.w 

and 
20 6 = 1 - -  
d '  (4.2) 
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Here v and 6 are defined in the following asymptotic behaviours: 

N Kawashima and M Suzvki 

((T) o( T-" 

m(H) LX ~ ' 1 ~  

(4.3) 

(4.4) 

where ((T) is the correlation length and m(H) is the magnetization per spin at  T = 0. 
Substituting the estimated values into (4.1) and (4.2), we get 

U = 3.6(1) [25] v = 3.4(1) [26] (4.5) 

and 

6 = 1.281(5) 1251 6 = 1.291(2) 126). (4.6) 

On the other hand, the direct estimation of the exponent v by the transfer-matrix 
method at  finite temperatures [28] yields the following value for the exponent U ,  some- 
what smaller than the above results, 

v = 3.0(2). (4.7) 

In this section, we assume the following scaling form for the magnetization per spin 
at T = 0: 

where 

f i ( H ,  L )  G m(H, L )  - lim m(H, L )  (4.9) 
H-O+ 

and *(I) is a scaling function. The scaling form (4.8) implies that 

m(H) % +(CO, H )  LX H'I6 (4.10) 

(4.11) 

I. .  vve have caicuiated the magnetizaiion per spin iil various itiagiieiie fieids and for 
various system sizes in order to investigate the critical behaviour. The sizes of the 
systems we have treated for this purpose are L = 6 to L = 20, and the numbers of 
bond samples used for averaging are 1024 for L = 20 to 8192 for L = 6. The scaled 
data are shown in figure 5. In figure 5, we have adopted the value 1.0 predicted by 
the DWRG argument for the exponent r$ and the value 1.476 estimated below for the 
enp",,",,b U. zr",', b,,CSC ualia wc U a Y E  CSLIIIII~LLC" ,.,1= " " " L F p Y ' " 1 L 1 Y J  ."a F*CU c.,YYL'L. .,1YL. 

In this estimation, only data for sufficiently small fields are used to avoid the effect of 
terms with higher orders in H .  In figure 6, the size dependence of the susceptibility 
is shown. Least squares analysis to the present data results in 

I L n..- .L-.. >.L- .... L --,:-.",-A , ~ ~ ~ . . - " " - , : ~ ~ , ~ , . , ~ - . " " " ~ . . , a t n m  .:%, 

I = 0.476(5) (4.12) 
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B x 

Figure 5. The scaling plot of the magnetization. The scaled variables are HL*' 
and h L *  with 6 = 1 and 6 = 1.476. Symbols stand for L = 6 (t), 8 ( X ) ,  12 (O), 16 
(0) and 20 (o), respectively. 

1.0 

0.7 

0.6 
v / . 

/ 

0.4 

0.3 
5 6 7 8 9 1 0  20 

L 
Figure 6. The size dependence of the susceptibility x ( L ) .  The straight line is the 
result of a least squares analysis with the fitting function x ( L )  = oL= which yields 
z = 0.476. The broken line indicates the inclinationpredicted by the DWRG argument 
( z  = 0.291). 

when we use a simple fitting function 

*L \ - ,  d L I  = aL'. (4.13) 

According to the DWRG argument, the above exponent I is directly related to the 
stiffness exponent 0 by the following equation: 

I = -a. (4.14) 
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Since there are no critical exponents other than z and 0 in the above equation, it 
is convenient to  compare our result with the prediction of the DWRG arguments by 
calculating this exponent. Our estimation (4.12) is clearly larger than the DWRG 
prediction beyond the statistical error. In order to  eliminate a possible finite-size 
effect more carefully, we have tried another fitting function for our data. That  is, we 
have added an extra constant to  the system size L as a fitting parameter. Then the 
new fitting function becomes 

N Kawashima and M Suzuki 

x(L) = a(L + b ) = .  (4.15) 

In this case, the resulting value of the exponent z is 

z = 0.51(4). (4.16) 

Again, our result is not compatible with the DWRG prediction. The exponent Q is 
predicted to be unity by the DWRG argument. If this is the case, (4.12) produces 

6 = 1.476(5). (4.17) 

This is the value used in the previous scaling plot in figure 5 .  
At present, we  have no complete explanation of the discrepancy between our result 

and the DWRG argument based on the numerical estimation of the stiffness exponent. 

5. Discussion and conclusions 

In this paper we have presented a new method to  calculate the exact ground states for 
two-dimensional systems in several conditions which are not tractable by the ordinary 
transfer-matrix method, the simulated annealing method or methods based on graph 
theory and the theory of linear programming. The present method is also effective 
in calculations for large systems without a field. We have demonstrated that the 

Tv,s is Lueianse 
undesirable percolation of clusters takes place for small n and it prevents effective 
flipping of large excitations, whereas with many replicas each relevant excitation can 
be recognized separately. I t  has been confirmed numerically that our method works 
well, a t  least, for system size L 5 32. The size dependence of the computational time 
is moderate and well fitted by the power law 

~ n ~ r o ~ u c ~ i o n  0; many replie= imptovee ikle eE,ficiency remaikabpy, 

r o( N2.6 (5.1) 

for N 5 1024. Thus,  the present method is found to  be promising even for larger 
systems. In addition, the present method works also in the presence of uniform field. 
This method is simpler than other methods based on the theory of linear program- 
ming, and the physical meaning of it is clearer. Formally, it is applicable to  problems 
in dimensions higher than three, although its efficiency has not been checked. Fur- 
thermore, it should be noted that the present method can be generalized to  study 
finite-temperature properties. That  is, we can easily construct a new replica Monte 
Carlo algorithm with more than two replicas. We expect that the introduction of many 
replicas resolves the difficulty that arises from the percolation of relevant excitations 
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[19] and that we may overcome the long-relaxation time even in three dimensions. 
The detail of this extension of the %ROM will be presented in the near future. 

Of course, since the problem in the non-zero uniform field belongs to the class of 
NP-complete problems, some ‘bad’ bond samples exist for which convergence takes 
far longer than for other samples of the same size. The fraction of such ‘bad’ samples 
for which convergence takes more than ten times longer than the average is small, say 
10% at most, in every case we have investigated so far. How to diminish this fraction 
and how to treat ‘bad’ cases are interesting future problems. 

The physical result presented in section 3 is somewhat peculiar. It suggests that  
the DWRG argument with the numerical estimations of the stiffness exponent fails to 
predict the value of the exponent 6 precisely. It is important to clarify whether the 
discrepancy between our result and the previous results is due to the finitesize effect 
or to wrong assumptions in the DWRG argument. Unfortunately, we do not have an 
objective and reliable criterion to determine whether certain data lie in the critical 
region or not. The only method available to us is to see how well the scaled data can 
he fitted by a particular curve. It cannot help being more or less subjective. Thus we 
cannot in general exclude the possibility that the finite-size effect may have affected 
our estimation of the  critical exponents. In the present case, however, our data for 
the susceptibility obey the power law 

x(L) a L” with z = 0.476(5) (5.2) 
very well. The chi-square divided by the degree of freedom (= 3) is 0.21 in the least 
squares analysis with a trial function (4.13). Hence, i t  is natural to assume that the 
behaviour remains the same for systems larger than the ones we have investigated. On 
the other hand, the data which were used in the estimation of the stiffness exponent 
(261 seem to be fitted by a power law very well. Thus it is also natural to expect 
that the true value of the stiffness exponent does not lie far beyond the statistical 
error. If this is the case, the reason for the discrepancy that we have observed must 
be looked for in the DWRG argument. For example, the discrepancy can be explained 
by assuming that the stiffness exponent which characterizes the size dependence of 
the domain-wall energy does not coincide with the exponent which characterizes the 
size dependence of the droplet excitation energy, although we have not expected such 
a situation. 

In  any case, our result shows that we have to be careful in estimating the critical 
exponents in an indirect way using the DWRG argument. We believe that the true 
critical behaviour of the present model will be clarified by direct estimations of critical 
exponents such as 6 and 7 in a finite magnetic field or at  finite temperatures. 

It should be mentioned that an analysis of the two-dimensional EA model with 
f J  bond distribution by the present method is also an interesting problem since i t  
belongs t o  a different universality class from that of the present system. The problem 
of whether the ground states for i J  distribution are paramagnetic or critical has 
not yet been settled. A recent numerical study [30] by the transfer-matrix method 
indicates exponential decreasing of the domain-wall energy A E  with respect to the 
longitudinal length of the system. 
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